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Abstract

Molecular collisions with very small particles induce Brownian motion. Consequently, such particles exhibit classical diffusion during
their sedimentation. However, identical particles too large to be affected by Brownian motion also change their relative positions. This
phenomenon is called hydrodynamic diffusion. Long before this term was coined, the variability of individual particle trajectories had
been recognized and a stochastic model had been formulated. In general, stochastic and diffusion approaches are formally equivalent. The
convective and diffusive terms in a diffusion equation correspond formally to the drift and diffusion terms of a Fokker–Planck equation
(FPE). This FPE can be cast in the form of a stochastic differential equation (SDE) that is much easier to solve numerically. The solution of
the associated SDE, via a large number of stochastic paths, yields the solution of the original equation. The three-parameter Markov model,
formulated a decade before hydrodynamic diffusion became fashionable, describes one-dimensional sedimentation as a simple SDE for the
velocity process{V(t)}. It predicts correctly that the steady-state distribution of particle velocities is Gaussian and that the autocorrelation
of velocities decays exponentially. The corresponding position process{X(t)} is not Markov, but the bivariate process{X(t), V (t)} is both
Gaussian and Markov. The SDE pair yields continuous velocities and sample paths. The other approach does not use the diffusion process
corresponding to the FPE for the three-parameter model; rather, it uses an analogy to Fickian diffusion of molecules. By focusing on velocity
rather than position, the stochastic model has several advantages. It subsumes Kynch’s theory as a first approximation, but corresponds to
the reality that particle velocities are, in fact, continuous. It also profits from powerful theorems about stochastic processes in general and
Markov processes in particular. It allows transient phenomena to be modeled by using parameters determined from the steady-state. It is
very simple and efficient to simulate, but the three parameters must be determined experimentally or computationally. Relevant data are still
sparse, but recent experimental and computational work is beginning to determine values of the three parameters and even the additional
two parameters needed to simulate three-dimensional motion. If the dependence of the parameters on solids concentration is known, this
model can simulate the sedimentation of the entire slurry, including the packed bed and the slurry–supernate interface. Simulations using
half a million particles are already feasible with a desktop computer. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Kynch’s theory [1] is based on the assumption that all par-
ticles at the same solids concentration settle with the same
velocity. Although this was acknowledged as an approxima-
tion, it was widely believed that identical particles would
have the same velocity apart from some minor fluctuations
[2]. In the colloidal size range (up to 0.1mm), the bombard-
ment of the particle by solvent molecules produces Brownian
motion and the particle motion is no longer deterministic [3].
Such particles exhibit classical diffusion. However, experi-
mental observations of closely sized particles that are much
larger also show a great variation in their velocities (see
Tory et al. [4] for references to early work). Even identical
spheres change their relative positions during sedimentation
[5,6]. This process is called hydrodynamic diffusion [7,8].
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Although this phenomenon had been described a decade
earlier as a stochastic process [5,9], the diffusion approach
was much more familiar and rapidly became more widely
used. However, the stochastic and diffusion approaches are
related and the former has many advantages. Each stochas-
tic trajectory mimics the path of an individual particle in
an actual experiment. Collectively, the trajectories illustrate
the overall behavior of the dispersion. In particular, the
three-parameter Markov model [10–13] is a generalization
of Kynch’s theory that incorporates all the major features
of one-dimensional sedimentation. A five-parameter model
describes three-dimensional sedimentation [14].

2. Fokker–Planck equation

Almost all chemical engineering problems are solved
within the general framework of the basic laws of mass,
momentum, and energy transport. The partial differen-
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tial equations known asequations of changedetermine
how mass, energy, and momentum change within a region
of space [15]. These equations are closely related to the
Fokker–Planck equation (FPE), which can be written in the
general form:

∂
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wheret represents time,x is ad-dimensional vector of coor-
dinates,P is a probability density,A is ad-dimensional vec-
tor, andD is a positive-semidefinite symmetricd×d matrix.
The term containingA is the drift term and the term con-
tainingD is the diffusion term [15]. There are many cases in
which a transport equation can be written as an FPE. How-
ever, the dependent variable in the transport equation is con-
centration, temperature, etc. while the dependent variable in
the FPE is a probability density. By definition, the integral
of the latter over thex-space is unity, so a trivial rescaling
is necessary [15].

3. Transformation of an FPE to a stochastic differential
equation (SDE)

Assuming thatA andD satisfy certain conditions, it can
be proved that the FPE given by Eq. (1) corresponds to
a Markov process that is the solution of the multivariate
stochastic differential equation:

dXXX t = AAA(t, XXX t )dt + BBB(t, XXX t )dWWWt (2)

where

DDD(t, xxx) = BBB(t, xxx)BBBT (t, xxx) (3)

and W is a d-dimensional vector of independent Wiener
processes [15,16].

Since the hydrodynamic diffusion of sedimenting parti-
cles is deemed to be analogous to the Fickian diffusion of
molecules [7,8], it is useful to begin with a well-known dif-
fusion problem. In sedimentation, the value of the diffusion
coefficient will be a function of the solids concentration.
Bargiel and Tory [17] used the stochastic approach to solve
the simple (but non-trivial) PDE:
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that describes one-dimensional diffusion with a diffusion
coefficientα that depends onθ whereθ is the dependent
variable (concentration, temperature, etc.). To convert this
to an SDE, they noted that:
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When Eq. (6) is substituted in Eq. (4) the latter has the
form of Eq. (1) with:

A(t, x) = dα

dθ

∂θ

∂x
(7)

Thus, the corresponding SDE is:

dX(t) = dα

dθ

∂θ

∂x
dt + (2α (θ))1/2 dW(t) (8)

Note that Eq. (6) is not an FPE becauseθ is not a prob-
ability density. Sinceθ is proportional toP this affects
only the details of the normalization. If Eq. (4) describes
molecular diffusion, each solution of Eq. (8) represents the
(one-dimensional) path of a single molecule.

An SDE is solved by discretizing the space and time vari-
ables and generating many sample paths [15] (the spatial
subdivisions are called bins). As in scientific polling, a fairly
small representative sample closely approximates the entire
population. Bargiel and Tory [17] solved Eq. (8) with the
boundary conditionθ(0, t) = 1, t > 0 and the initial
condition θ(x, 0) = 0, x > 0, (for which an analytical
solution is available). It is easy to scale the SDE results to
satisfy the boundary condition.N0 is the number of parti-
cles (in a bin) corresponding toθ = 1. Then, for each bin,
θj = Nj/N0. The discrete approximation of Eq. (8) is:

Xi (t + 4t)= xi(t)+
(
θj+1 − θj−1

24x
)

dα

dθ
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θj

4t

+(2αj 4t)1/2ψi (9)

whereψi is a random number from the standard normal dis-
tribution andαj and θj are the values ofα and θ for the
bin in which theith particle is located. The only limitation
of the method is that4t must be very small to ensure that
the last term in Eq. (9) is not too large. Thus, it is only
fairly recently that this method has become a practical alter-
native. Fig. 1, which compares the stochastic and analytical
solutions, shows that the stochastic method is very accurate
with a modest number of solutions. Fig. 1(a) indicates that
the individual values from each run cluster around the line
representing the analytical solution. Fig. 1(b) shows that the
average values fall almost exactly on that line. A different,
but similar, example is shown in the paper by Bargiel and
Tory [17]. Of course, the hydrodynamic diffusion descrip-
tion of sedimentation will contain a drift term which was
not part of the molecular diffusion problem.

A special feature of their solution is that many paths are
generated in parallel and non-linear diffusion is solved as a
Pickard–Tory process[12]. The number of particles in each
space interval at a given time provides an estimate of the
value ofθ and henceα. Givenα, the trajectories are indepen-
dent. Each particle moves, in each time step, according to
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Fig. 1. Non-linear diffusion. (a) Each point represents a simulated value
of θ in a bin centered atx at time t . (b) Points represent values averaged
over 0.05 on the abscissa. The solid line is the analytical solution.

the value corresponding to its position. However,α is also a
random variable, being determined by the empirical estimate
of θ which is itself evolving. This process was first encoun-
tered in modelling sedimentation and is discussed in more
detail in Section 8. Eq. (9) shows the limitations of the hy-
drodynamic diffusion approach. Since lim1→0(1t)

−1/2 =
∞, the square-root in the last term implies thatX(t) is con-
tinuous everywhere, but differentiable nowhere.

4. The three-parameter Markov model

Despite its theoretical limitations, Kynch’s theory has
been very successful in explaining the behavior of incom-
pressible slurries [18]. However, there are two features of
sedimentation that it cannot describe. Not only do identical

particles in a suspension settle with different velocities, but
also the velocity of each particle changes with time. These
features are incorporated in a Markov model [5,19,20]. The
Markov property reflects the well-known result that the ve-
locity of a particle in creeping flow depends only on the
current configuration of the system and not on any previous
configuration. Solids concentration is used as a proxy for
configuration. Since a given concentration represents many
different configurations (and hence many different veloci-
ties), the deterministic effect of this variability (of configu-
rations on particle velocity) is replaced by a random process.
The assumption that particle velocity depended only on
the local solids concentration was crucial to the success of
Kynch’s theory. However, the spatial and temporal variabil-
ity of identical particles at the same solids concentration
shows that (at least) two additional parameters are necessary
for a complete description. In contrast to Kynch’s assump-
tion, the three parameters are assumed to be functions of
a weighted-average of local solids concentrations. This as-
sumption is supported by computational evidence [4,21,22].

The three-parameter Markov model [10–12] can be
written as:

dV (t) = −β(V − µ)dt + σ dW (10)

dX(t) = V (t)dt (11)

whereV is the velocity of an individual particle,X is its
position, andβ, µ andσ are the three parameters;σ con-
trols the variation of velocityincrements, while β(V −µ)dt
describes the strength with which individual velocities are
shifted to the steady-state ensemble valueµ [12]. From
Eqs. (1)–(3) withv replacingx, the Fokker–Planck equation
(also known as the (Kolmogorov) forward equation [16,23])
corresponding to Eq. (10) is:

∂P
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2

∂2
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(σ 2P) (12)

The three-parameter model differs from the well-known
Ornstein–Uhlenbeck model only in the presence ofµ [24].
Consequently [12,25], its principal features are easily ob-
tained. Velocity,V (t) is an Ornstein–Uhlenbeck process
with parametersµ, β andσ ; position is the corresponding
integrated Ornstein–Uhlenbeck process:

X(t) = X(0)+
∫ t

0
V (τ)dτ (13)

BothV (t) andX(t) have continuous sample paths. Given
a standard Wiener processW(t) starting fromW(0) = w0
then:

V (t) = e−βt W
[
σ 2
v

(
e−2βt − 1

)]
+ µ (14)

is a solution of Eq. (10) withσ 2
v = σ 2/ (2β) andV (0) =

w0 + µ [25].
When the solids concentration remains essentially con-

stant, any initial distribution of particle velocities evolves to-
ward a steady-state (in practice, of course, the particles may
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reach the bottom of the settling tank before the steady-state
can be reached). This approach to a steady-state distribu-
tion of velocities is a general feature of Markov models
for sedimentation [5,20]. For the three-parameter model, the
steady-state velocity distribution is normal with meanµ and
varianceσ 2

v . Velocity autocorrelations are given byρ(t) =
e−βt .

The velocity process{V(t)} is both Gaussian and Markov.
The corresponding position process{X(t)} is Gaussian, but
obviously not Markov. However, the bivariate process{X(t),
V(t)} is both Gaussian and Markov. Its transition structure
is bivariate normal with the following moments [12,25]:

E(V (t)|X(0)=x0, V (0) = v0) = µ+ (v0 − µ)e−βt (15)

E(X(t)|X(0)= x0, V (0) = v0)

= x0 + µt + (1 − e−βt )(v0 − µ)/β (16)

Var(V (t)|X(0) = x0, V (0) = v0) = (1 − e−2βt )σ 2
v (17)

Var(X(t)|X(0)= x0, V (0) = v0)

= (2βt − 3 + 4e−βt − e−2βt )σ 2
v /β

2 (18)

Cov(X(t), V (t)|X(0)= x0, V (0) = v0)

= (1 − e−bt)2σ 2
v /β (19)

Note that the last three values are independent of the initial
conditions. Also, fort1 ≤ t2 the relationship between the
velocities at two different times is:

Cov(V (t1), V (t2)) = σ 2
v

[
e2βt1 − 1

] [
e−β(t1+t2)

]
(20)

Similarly, that for the distances travelled is:

Cov(X(t1), X(t2))=
[
σ 2
v /β

2
] [

2βt1 − 2 + 2e−βt1

+2e−βt2−e−βt2(eβt1+e−βt1)] (21)

Eqs. (15)–(19) form the basis for simulating sedimenta-
tion; Eqs. (20) and (21) have been used for interpolation
in the determination of crossing velocities [26] and transit
times [13], respectively.

Let t1 = t ′ andt2 = t ′ + t in Eq. (20). Then:

C(t) = Cov(V (t ′), V (t ′ + t)) = σ 2
v e

−βt (1 − e−2βt ′) (22)

plays an important role in the diffusion approach.

5. Simulation of transit times

Experiments to determine settling velocity as a function
of solids concentration have used the rate of fall of the
slurry–supernate interface, the time for marker particles to
traverse a fixed distance, the distance travelled by particles
in a fixed time, and the determination of the instantaneous

velocities. Even when the values of the three parameters are
not known precisely, simulations can be useful in determin-
ing the validity of some of these methods.

Measuring the time for marker particles to traverse a fixed
distance has been a popular method of determining mean
velocity [7,26–32]. Since both downward and upward ve-
locities occur in dispersions, starting and finishing the jour-
ney with a downward velocity might be expected to bias
the results toward a value greater thanµ [10]. Later work
[11,13,26] showed that total time divided by total distance
provides an unbiased and strongly consistent estimate of
µ−1 i.e.:

E

[
n∑
i=1

ti/(nx)

]
= µ−1 (23)

and

lim
n→∞

n∑
i=1

ti/(nx) = µ−1 (24)

These results have been proven rigorously for dispersions
in which all particles move downward. Simulations have
demonstrated that these equations hold even for coefficients
of variation (λ = σv/µ) far larger those obtained experi-
mentally. Simulations have also shown that these equations
hold even when the distance traversed is very small [32]. It
remains, however, to prove that they hold asx → 0.

The variability of the times to traverse a fixed distance
indicates that particle velocities vary, but it is not immedi-
ately clear what is being measured. Pickard et al. [11] clar-
ified the fundamental structure of the model by defining the
dimensionless variables:

v∗ = v/µ t∗ = βt xxx∗ = βx/µ (25)

whence

µ∗ = β∗ = 1 σ∗ = σ/µ = λ

The coefficient of variation,λ, then becomes the only
remaining parameter, the other two being absorbed in the
scaling process. In this dimensionless form,t∗ is measured
in correlation times andx∗ in correlation lengths. This sim-
plification shows thatλ is the fundamental parameter that
determines the nature of sedimentation at steady-state; the
other two parameters (β andµ) simply determine the time
and distance over which the phenomena occur.

For moderately large values ofx∗ transit times,T∗(x∗), are
distributed according to a log-normal distribution [11,13].
Tory et al. [26] determined the distribution of crossing veloc-
ities and first-crossing velocities and clarified the distinction
between them. Simulations [11,13] also established that:

Var [T∗(x∗)] = 2λ2x∗ (27)

As x∗ → ∞, T∗ (x∗) is given approximately by the
first-passage time in the Wiener process with driftµ∗ [11].
This yields the asymptotic value of 2, but the fit is also
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excellent at small values ofλ2x∗ In terms of the original
variables, Eq. (27) is:

Var [T (x)] = 2σ 2
v x/(βµ

3) (28)

In many experiments to determine the times to traverse a
fixed distance,x, only Var[T(x)] andµ are determined. This
leavesσ 2

v andβ inextricably intertwined.

6. Distribution and autocorrelation of velocities

Assuming a Poisson distribution of sphere centers in a
very dilute dispersion, Tory and Kamel [33] calculated the
variance of the velocity of a sphere in a spherical container.
When the test sphere is momentarily concentric with the con-
tainer, the mobility tensor assumes a particularly simple form
[34] and the mean and variance are easily calculated. Tory
et al. [35] extended these theoretical calculations to the third
and fourth central moments of velocity, thereby determining
the skewness and kurtosis of the distribution. They proved
that the distribution quickly approaches normality as the size
of the container (relative to the particle size) increases. More
generally, Caflisch and Luke [36] had stated earlier that the
initial distribution of velocities is asymptotically normal. In
dilute dispersions, however, rapid “demixing” of the disper-
sion occurs and cluster formation is extensive [37,38]. Tory
and Pickard [10] found that velocities in the second minute
of sedimentation [4] were highly variable; the largest down-
ward and upward velocities both occurred in this interval. A
Kolmogorov–Smirnov test [39] shows that this distribution
was not normal. Rather, it is skewed to large downward val-
ues. From the fifth minute on, however, the distribution of
velocities was normal, as noted below.

Tory and Pickard [10] measured the distances travelled
by marker spheres in consecutive one-minute intervals and
determined the values of the three parameters from 32 pairs
of data. Subsequent analyses [4,40] of their data refined and
strengthened their results. Bürger and Tory [40] showed that
the solids concentration near the top changed from that in
the bulk of the dispersion to a considerably lower value.
Tory et al. [4] found that steady-state values in the lower
part of the dispersion were similar to those higher up. The
net result of these studies was to eliminate a few pairs from
the original analysis [10] and to add many others to bring
the total to 68 pairs. Using the first member of each pair,
we conducted a Kolmogorov–Smirnov test [39] for normal-
ity. The value of 0.718 is close to the size typically found
under the null hypothesis (i.e.KS∈ [0.6, 0.7]. The critical
values for the 15 and 5% levels of significance are 0.775
and 0.895, respectively, so these values are completely com-
patible with normality. Since the theoretical distribution of
distances travelled is also normal, this suggests that the ex-
perimental distribution of instantaneous velocities is normal.
However, it is possible that the averaging effect [41] could
produce a normal distribution of distances travelled from a
non-normal distribution of velocities.

Nicolai et al. [42] measured changes in vertical and hor-
izontal positions during very short time periods to obtain
essentially instantaneous velocities. Histograms of these ve-
locities were found to be very smooth and approximately
Gaussian. Ladd [43] used a method for computing the hydro-
dynamic interactions among spherical particles as the basis
for a small-scale simulation of sedimentation of spheres. He
found that non-Gaussian effects were small at low concen-
trations, but increased with concentration, becoming large
at high concentrations. The small size of the simulation
may have magnified the non-Gaussian effects. In any case,
his results support the view that the distribution of veloc-
ities is approximately normal in dilute dispersions. Höfler
also found that computed velocities were approximately
Gaussian.

We have already noted that a normal distribution of velo-
cities gives rise to a distribution of transit times that is
approximately log-normal. Koglin [31,45] measured transit
times and found that they followed a log-normal distribution.
This provides additional support for a normal distribution.

Ladd [43] also found that correlations in the translational
velocities parallel to the sedimentation axis decayed as a
single exponential in time, i.e.ρ (t) = e−βt in our nota-
tion. Nicolai et al. [42] found the same relationship. Koglin
[31,45,46] measured the times for a particle to traverse
a succession of fixed distances and calculated the mean
velocity for each interval. He found that the correlation
coefficient between these mean velocities was satisfacto-
rily represented by an exponential decrease with increasing
distance between the centers of the distance segments. The
three-parameter model predicts an exponential decay of
correlations between the distances travelled in fixed time
intervals [10,25,47]. Intuition suggests and simulations con-
firm that this should hold approximately for mean velocities
over fixed space intervals [25]. Tory et al. [13] showed
that correlation coefficients of simulated transit times for
successive space intervals decayed exponentially and that
the value ofβ was the same as for the decay of the corre-
lations of the instantaneous velocity. After a few intervals,
however, random fluctuations overwhelm the relationship.

7. Parameter values

In order to compare experimental values of the three pa-
rameters, we need to express them in a suitable dimension-
less form. We use:

µ∗ = µ/u0 σ ∗ = σv/u0 β∗ = βl/u0 (29)

whereu0 is the Stokes velocity of the particle andl is its
characteristic dimension. An alternative is to use a relaxation
time, t∗, which is expressed in terms oft0, the time for a
particle moving at its Stokes velocity to traverse a distance
equal to its characteristic dimensionl. Then,t0 = l/u0 and
t∗ = 1/β∗. For spheres, it is usual to choose the radius,a, as
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the characteristic dimension. These parameters are functions
of the solids concentration,ϕ.

In their reanalysis of the data of Tory and Pickard [10],
Bürger and Tory [40] obtainedµ∗(0.02) = 0.959 and
σ ∗ (0.02) = 0.587. They also obtained values of 0.819 and
0.209, respectively, for these parameters in a dilute region
with a gradient in whichϕ appeared to vary between roughly
0.0064 and 0.0095 from top to bottom. Kaye and Boardman
[27,28], Johne [30], and Koglin [31,48] also found thatµ∗
and σ ∗ increased withϕ in this range of concentrations.
In very dilute dispersions, the mean velocity varies with
the size of the container relative to the particles. Thus, the
range over whichµ∗ increases withϕ depends on the size
ratio. The variance increases with the relative size of the
container and withϕ. Consequently, the upper levels be-
come depleted [10,40,48]. Thus, values of these parameters
cannot be compared directly, but they are consistent [4,48].
In one study [48], the interface was sharp only forϕ ≥ 0.2.
Then, the upper levels were no longer depleted and the rate
of fall of the interface was given fairly accurately by the
Richardson–Zaki equation [49]. When the relative size of
the container is smaller, depletion is less and the interface
becomes sharp at much smaller values ofϕ [27,28]. Then,
the mean velocity is given fairly accurately by the rate of
fall of the interface forϕ ≥ 0.05. Values ofσ ∗for ϕ ≥ 0.05
are controversial; theory [4,33,36] and simulations [50,51]
predict an increase with container size that was not found
experimentally by Nicolai and Guazzelli [52]. However,
their values may have been affected by the presence of a
small concentration gradient (see Section 9).

Until recently, most experimenters paid little attention to
determining the values ofβ∗ or, equivalently,t∗. Prior to the
formulation of the three-parameter model [10],t∗ was not
measured, although Koglin [31,46] determined a related pa-
rameter. Bürger and Tory [40] found thatβ∗(0.02) = 0.0149
and hencet∗ = 67.1. The latter is higher than the value
cited by Tory and Hesse [22] because the reanalysis used
additional data and because the value ofu0 is less at 24.0◦
than at 25.1◦. Bürger and Tory determined thatβ∗ in the
gradient was 0.0350 (t∗=28.6). Ladd [43] obtained values
of t∗ between 25 and 50 with a minimum atϕ = 0.25. More
recently [51], he found thatt∗ = 10 for ϕ = 0.1. The dif-
ference between his values may be due to the fact that his
first simulation involved fewer spheres and, consequently,
there was less opportunity for spheres to slide past one an-
other without interference. Nicolai et al. [42] found thatt∗
varied between 16 and 26. It increased slightly withϕ from
0.15 to 0.40. There may be a minimum between 0.10 and
0.15, but the difference in values is within experimental er-
ror. Höfler [44] obtained a value oft∗ ≈ 18 for ϕ = 0.3.
Hesse and Ramos [47] found thatt∗ was essentially con-
stant at 387 in very dilute dispersions of cylinders. This is
much higher than values for spheres, but part of the varia-
tion in the velocities of cylinders arises from differences in
orientation [47,53]. It is plausible that orientation changes
slowly at these values ofϕ.

Pickard and Tory [12] conjectured thatt∗ reaches a max-
imum atϕ = 0.02 (where cluster settling is extensive) and
decreases thereafter. The decrease int∗ with decreasingϕ
found by Bürger and Tory [40] together with the values
found by Ladd [43] suggests that there is indeed a local
maximum (at least) at some low value ofϕ. Also support-
ing this view is the fact that an isolated sphere quickly at-
tains its steady-state value, implying a very small value of
t∗. On the other hand, the type of motion observed at very
high concentrations by Ladd suggests that relaxation times
should be long and this is supported by his values. The best
guess at the moment appears to be an initial increase to a
maximum or local maximum followed by a decrease to a
local minimum and a subsequent increase withϕ. There is
a great need for good experimental data over a wide range
of concentrations.

8. Comparison of the stochastic and diffusion
approaches

The formal equivalence between the three-parameter
Markov model and a hydrodynamic diffusion approach is
through Eq. (12), the FPE, to an equation of change that
describes the diffusion ofvelocity. From its beginning, how-
ever, the hydrodynamic diffusion approach assumed that
‘the random positions of the particles and a large number of
interactions are expected to cause the details of individual
interactions to be lost and an individual particle to execute
a random walk through the suspension. Such a random
walk process leads naturally to a description of particle mi-
grations as a Fickian process. Once an analogy to Fickian
diffusion is made, the associated dispersion coefficient,D,
can be described in terms of the long-time behavior of the
‘distribution of particle positions(our emphasis) . . . ’ [7].
ThenD is given by [42].

D =
∫ ∞

0

C(t)dt (30)

whereC is defined by Eq. (22). Also:

C (t) = C (0) e−t/t
∗

(31)

whence

t∗ = [1/C (0)]
∫ ∞

0

C(t)dt (32)

Note that Eqs. (17) and (22) imply that:

C(0) = Var
[
V (t ′)

]
(33)

and

ρ(t) = C(t)/C(0) = e−βt (34)

as noted in the section on the three-parameter model.
Thus, the principal difference between the two approaches

is that hydrodynamic diffusion focuses on position while



E.M. Tory / Chemical Engineering Journal 80 (2000) 81–89 87

Fig. 2. Simulated trajectory of a sedimenting sphere.x is the distance
travelled in the downward direction (from Tory et al. [13]).

the Markov model focuses on velocity. In this respect, the
latter has an advantage. In Fickian diffusion, particle paths
are continuous, but velocity is not. In the Markov model,
both velocity and sample paths are continuous [11,12,25]
and interpolated paths are piecewise smooth [11,13]. Fig. 2
shows a typical one-dimensional path. The diffusion model
emphasizes the long-run behavior of the particles. While the
Markov model also makes predictions about long-term be-
havior, it can also handle situations in which particles pass
through regions in which the solids concentration changes
rapidly. By emphasizing velocity, the Markov model sub-
sumes Kynch’s theory as a first approximation [19]. Most
importantly, the three-parameter Markov model is ideally
suited for simulations [11,12,25,54]. Where changes are
gradual and fluctuations in velocity are relatively small, the
simulations will closely follow Kynch’s theory [19] (in the
Markov model, however, there are no discontinuities in ve-
locity). In other situations, the model predicts phenomena
that would not be possible if Kynch’s theory were strictly
true [40].

The three-parameter model makes specific predictions
about the behavior of slurries. In particular, it predicts that
particle velocities will evolve to a steady-state distribution
and that this distribution will be normal. It also predicts
the exponential decay of the autocorrelation of velocities.
These predictions have been verified experimentally. More
generally, however, sedimentation is a Pickard–Tory process
[12]. This approach uses a parametrized (by environment)
family of independent processes to define a single complex
process for the ensemble of all particles. Then, sedimenta-
tion is characterized by the following fundamental principle:
Identical particles in the same environment are governed,
independently, by the same stochastic process.

At each time, each particle moves according to the fam-
ily member describing its current environment. Moreover,

the particles actindependently, given their parameter values
(i.e. environments). However, these parameters are also ran-
dom variables, being determined by theconfiguration of the
entire system, which is itself evolving. Sedimentation pro-
ceeds incrementally as follows:

Particles (simultaneously) consult their current environ-
ments and move (simultaneously) with Markov velocities,
yielding new velocities and positions, and hence new
environments.

This complex structure was introduced by Pickard and
Tory [55] in 1974 and refined by them [12] in 1987. Still
later, it was justified for dilute dispersions [4]. However, it
does not hold for concentrated dispersions where particles
interact directly with their nearest neighbors via lubrication
terms [43]. As more information becomes available, it may
be possible to refine the Markov model by including such
features as different concentration-dependent parametersφ1,
φ2 andφ3 for µ, β andσv, respectively. Perhaps concentra-
tion gradients could be included as a significant feature of
the environment (see Section 9).

Unlike molecular diffusion, which involves astronomical
numbers of particles, experiments to measure the parame-
ters involve, by necessity [42], a limited number of particles.
The exploratory experimental study by Pickard and Tory
[10] used roughly 32 000 particles. A simulation of their
experiment by Tory and Ford [54] used a comparable num-
ber of particles. The experiments by Nicolai et al. [42] with
ϕ = 0.05 used roughly 1.5 million particles. In both experi-
ments, the positions of a few marked spheres were followed.
These experimental trajectories can be compared directly to
simulated trajectories. Simulations with half a million parti-
cles are already feasible with desktop computers [54]. With
relatively small samples, fluctuations in the local solids
fraction can influence the settling behavior. Thus it is impor-
tant to mimic this feature as far as possible. As computers
become more powerful and the sedimentation parameters
become better known, the advantages of the Markov model
will become greater and greater. By incorporating values
of σv andβ for the horizontal component of velocity, we
obtain a five-parameter model for three-dimensional sedi-
mentation [14,22]. Simulations have already incorporated
this feature, but only for visual effect [12].

9. Discussion

In his report on an international symposium, Davis [56]
states that phenomena related to hydrodynamic diffusion
have been studied for just under ten years. This statement
takes no account of many significant papers that were pub-
lished long before the field became fashionable. Though the
term, hydrodynamic diffusion, is relatively new, evidence
for the variability of particle velocities is ancient and abun-
dant. This evidence has been summarized and interpreted
by Tory and Pickard [57]. In particular, the Markov model,
which can achieve any result obtained from the diffusion
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model, preceded the latter by a decade. However, the em-
phasis on diffusion has led to some excellent work and the
steady-state values of the parameters in regions of constant
concentrations are slowly being determined. The problem of
characterizing these values in regions of rapidly changing
concentrations is much more difficult [54].

The major problem for both groups is that theory pre-
dicts that the variance of particle velocities in dispersions
increases without limit as the dimensions of the dispersion
increase [36,50,51]. This increase is found experimentally
in very dilute dispersions [4], but not in those withϕ ≥
0.05 [52]. In simulations with periodic boundary conditions
[50,51], there is no depletion of the upper levels. In experi-
ments, there is some depletion of the upper levels of disper-
sions of intermediate concentration even if the particles are
identical [20,48]. In one study [48], this depletion occurred
for ϕ < 0.2. In addition, there will be some segregation by
size in dispersions of low to intermediate concentrations.
Shannon et al. [58] found that the rise of the packed bed
was very non-linear forϕ ≤ 0.075 and slightly non-linear
for ϕ ≤ 0.1. The distribution of radii was sharper in the ex-
periments of Nicolai et al. (λa=0.043 vs 0.101 for Shannon
et al.), but some segregation by size would be expected at
ϕ ≤ 0.05. The segregation by chance and size would pro-
duce a concentration gradient and it is possible that this gra-
dient reduces the variance of velocity. In similar experiments
by Nicolai et al. [59], the settling speed of a single large
particle decreased as it fell through a suspension of smaller
particles. This is consistent with the presence of a gradient.
If segregation were greatest in the largest containers, the
gradients that formed there would be the sharpest. Conse-
quently, the resulting reduction in the variance would also be
the greatest. It is also possible that values oft∗ are smaller
in a gradient because it impedes the downward movement
of clusters. In very concentrated dispersions, lubrication ef-
fects, which are very short range, dominate the long-range
multiparticle effects [43] and the size effect should no longer
be a problem.
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